https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:30281 Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-a, IL-33, and CXCL1) in experimental COPD. Fbln1c⌿ mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.]]> Wed 11 Apr 2018 13:33:47 AEST ]]> Critical role of constitutive type I interferon response in bronchial epithelial cell to influenza infection https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:15132 Wed 11 Apr 2018 12:40:17 AEST ]]> The genetic and epigenetic landscapes of the epithelium in asthma https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:29462 IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.]]> Thu 24 Mar 2022 11:32:30 AEDT ]]>